ABRC2010 Safe Exchange of Honey Bee Germplasm

Bee Health August 13, 2013 Print Friendly and PDF
  • Published in the American Bee Journal, June 2010

This abstract is from the 2010 American Bee Research Conference was held January 14-15 in Orlando, Florida. This was a special joint conference between the American Association of Professional Apiculturists and the Canadian Association of Professional Apiculturists. For the complete proceedings, please see Proceedings_of_the_American_Bee_Research_Conference_2010.


5. Cobey, S., J. Pollard, C. Plante, M. Flenniken & W.S. Sheppard - DEVELOPMENT OF A PROTOCOL FOR THE INTERNATIONAL EXCHANGE OF HONEY BEE GERMPLASM - The development of protocol for the safe, well regulated international exchange of honey bee genetics is needed. The current ban on importation is inconsistent and has failed to prevent the spread of pests, parasites and pathogens. The initial limited gene pool introduced into the U.S. before the 1922 ban and the alarmingly high loss of colonies due to Colony Collapse Disorder is an increasing concern. Genetic diversity has been demonstrated to increase colony fitness and reduce the impact of pests and diseases. Our project is designed to develop technologies to safely import honey bee germplasm, semen and eggs, and to import stocks selected for resistance to enhance our domestic honey bee gene pool.

An improved bee semen extender with an antibiotic mixture, containing gentamicin, amoxicillin, lincomycin and tylosin, specifically designed to control bacterial pathogens was developed and tested to facilitate the transport of semen. Extended semen was examined for viability and motility after storage for 7 days, and inseminated to virgin queens. Results demonstrated high sperm viability, normal spermathecal sperm counts and normal brood patterns of inseminated queens.

USDA-APHIS (Animal Plant Health Inspection Service) permits were obtained and honey bee semen imported. Apis mellifera ligustica from survivor stock in Italy and A. m. carnica from the Germany Carnica Association were imported in 2008 and 2009 and crossed with domestic stocks. The semen was tested for viruses and resulting colonies established in an approved quarantine area at Washington State University. Progeny of these colonies were also examined and tested for pathogens. The 2008 imports released were backcrossed to the 2009 imports to create more pure stocks and also were incorporated into proven commercial U.S. stocks.

The New World Carniolan × German A.m. carnica colonies expressed increased fitness and increased expression of hygienic behavior. The Italian stock is still undergoing testing. Future plans are to import A.m. caucasica, as this subspecies is detectable but largely unrecognizable in the U.S.

Honey bee eggs represent a complete genetic package and are available in large quantities. Therefore, we developed reproductive technologies to manipulate honey bee eggs to allow for their isolation, pathogen testing and transport. A method to manipulate embryos was developed using fine forceps modified by the application of micro-bore tubing. The transferred eggs were hatched in vitro and the larva were grafted into queen cell cups, reared into queens and instrumentally inseminated with a high rate of success.